Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J. appl. oral sci ; 31: e20230108, 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1448553

ABSTRACT

Abstract Polyphenols interact with salivary proteins and thus can improve the pellicle's erosion protective properties. This effect could be exploited to create rinsing solutions with polyphenols as active ingredients for erosion prevention. Different from the current gold standard for erosion protective rinsing solutions, these rinses would not rely on stannous ions. This would offer alternatives for patients with concerns regarding the composition of rinsing solutions and preferring bio-products. Objective To develop an erosion-preventive rinsing solution containing natural polyphenol-rich extracts. Methodology Solutions were prepared with polyphenols from either grapeseed extract or cranberry extract, 500 ppm fluoride added, and additionally flavors and sweeteners. Controls were deionized water, 500 ppm fluoride solution, and the gold standard rinse in the field (Sn2+/F-). In total, 135 enamel specimens (n=15/group) were subjected to five cycles of salivary pellicle formation (30 min, 37°C), modification with the solutions (2 min, 25°C), further salivary pellicle formation (60 min, 37°C), and erosive challenge (1 min, 1% citric acid, pH 3.6). Relative surface microhardness (rSMH), surface reflection intensity (rSRI), and amount of calcium release (CaR) were investigated. Data were analyzed with Kruskal-Wallis and Wilcoxon rank sum tests (α=0.05). Results The polyphenol solutions containing fluoride, as well as additional flavors, protected enamel better than fluoride alone, and similar to the Sn2+/F- solution, when investigating both rSMH and CaR. When measuring rSRI, Sn2+/F- showed the best protection, while the polyphenol solutions were similar to fluoride. Conclusion For two of the three assessed parameters (rSMH and CaR), both developed polyphenol-rich rinsing solutions were able to protect enamel from erosion, improving/potentializing the effect of fluoride and matching the protection offered by the current gold standard rinsing solution.

2.
Braz. oral res. (Online) ; 37: e085, 2023. tab, graf
Article in English | LILACS-Express | LILACS, BBO | ID: biblio-1513886

ABSTRACT

Abstract The objective of this study was to compare the protein profile of the acquired enamel pellicle (AEP) formed in vivo in patients with or without gastroesophageal reflux disease (GERD), and with or without erosive tooth wear (ETW). Twenty-four volunteers were divided into 3 groups: 1) GERD and ETW; 2) GERD without ETW; and 3) control (without GERD). The AEP formed 120 min after prophylaxis was collected from the lingual/palatal surfaces. The samples were subjected to mass spectrometry (nLC-ESI-MS/MS) and label-free quantification by Protein Lynx Global Service software. A total of 213 proteins were identified, or 119, 92 and 106 from each group, respectively. Group 2 showed a high number of phosphorylated and calcium-binding proteins. Twenty-three proteins were found in all the groups, including 14-3-3 protein zeta/delta and 1-phosphatidylinositol. Several intracellular proteins that join saliva after the exfoliation of oral mucosa cells might have the potential to bind hydroxyapatite, or participate in forming supramolecular aggregates that bind to precursor proteins in the AEP. Proteins might play a central role in protecting the dental surface against acid dissolution.

3.
J. appl. oral sci ; 30: e20210698, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1386006

ABSTRACT

Abstract A new sugarcane-derived cystatin (CaneCPI-5) showed anti-erosive properties when included in solutions and strong binding force to enamel, but the performance of this protein when added to gel formulations and its effect on surface free energy (SFE) requires further studies. Objective 1) to evaluate the protective effect of gels containing different concentrations of CaneCPI-5 against initial enamel erosion (Experiment 1); and 2) to analyze the SFE (γS) after treating the enamel surface with CaneCPI-5 solution (Experiment 2). Methodology In Experiment 1, 75 bovine enamel specimens were divided into five groups according to the gel treatments: placebo (negative control); 0.27%mucin+0.5%casein (positive control); 0.1 mg/mL CaneCPI-5; 1.0 mg/mL CaneCPI-5; or 2.0 mg/mL CaneCPI-5. Specimens were treated with the gels for 1 min, the AP was formed (human saliva) for 2 h and the specimens were incubated in 0.65% citric acid (pH=3.4) for 1 min. The percentage of surface hardness change (%SHC) was estimated. In Experiment 2, measurements were performed by an automatic goniometer using three probing liquids: diiodomethane, water and ethylene glycol. Specimens (n=10/group) remained untreated (control) or were treated with solution containing 0.1 mg/mL CaneCPI-5, air-dried for 45 min, and 0.5 µL of each liquid was dispensed on the surface to measure contact angles. Results Gels containing 0.1 and 1.0 mg/mL CaneCPI-5 significantly reduced %SHC compared to the other treatments (p<0.05). Treated enamel showed significantly lower γS than control, without changes in the apolar component (γSLW), but the polar component (γSAB=Lewis acid-base) became more negative (p<0.01). Moreover, CaneCPI-5 treatment showed higher γS - (electron-donor) values compared to control (p<0.01). Conclusions Gels containing 0.1 mg/mL or 1.0 mg/mL CaneCPI-5 protected enamel against initial dental erosion. CaneCPI-5 increased the number of electron donor sites on the enamel surface, which may affect AP formation and could be a potential mechanism of action to protect from erosion.

4.
China Pharmacy ; (12): 160-164, 2020.
Article in Chinese | WPRIM | ID: wpr-817355

ABSTRACT

OBJECTIVE:To preliminarily optimize the preparation technology of Ligustrazine pellicle ,and to study its in vitro percutaneous permeation characteristics. METHODS :With the amounts of PVA- 124,ethyl alcohol ,glycerin,tween-80 and azone as factors ,single factor experiment was used to optimize the Ligustrazine pellicle matrix formulation ;modified scoring standard was used to evaluate the film formation time ,film formation ability ,ductility,uniformity and the presence of bubble. On the basis of the optimal matrix formulation ,the pellicle with different loading amount of ligustrazine (300,250,200,150,100,50 mg/mL) was prepared and its maximum loading amount was investigated. HPLC method was adopted to determine the content of ligustrazine,and methodology investigation was conducted. Isolated back skin of rats were collected ,the percutaneous permeation test was conducted for high ,medium and low loading amount (100,75,50 mg/mL)of Ligustrazine pellicle. At 15,30,45,60, 75,90,120,150,180 min,the sample was taken and the permeation rate of ligustrazine was calculated. RESULTS :When the amounts of PVA- 124,ethyl alcohol,glycerin,tween-80 and azone were 2.5 g,7.0 mL,1.97 mL,0.07 mL,0.28 mL(in terms of 50 mL formulation amount ),the optimal matrix formulation of Ligustrazine pellicle was obtained. The maximum drug loading amount of ligustrazine was 100 mg/mL. The linear ranges of ligustrazine was 3.125-100 μg/mL. The specificity,precision, reproducibility,recovery and stability investigation of content determination method of ligustrazine were all in line with the requirements(RSD<2%). The permeation rate of high ,medium and low loading amount of Ligustrazine pellicle were 608.42, 384.19,158.20 μg(/ cm2·h). CONCLUSIONS :According to the optimized formulation ,the prepared Ligustrazine pellicle had a short film forming time ,stable and re liable quality ; the drug-loading amount was up to 100 mg/mL. The pellicle with drug-loading amount of 75 mg/mL had reached the penetration rate range of effective plasma concentration of ligustrazine treatment.

5.
J. appl. oral sci ; 28: e20200189, 2020. tab, graf
Article in English | LILACS, BBO | ID: biblio-1134804

ABSTRACT

Abstract Saliva is the major contributor for the protein composition of the acquired enamel pellicle (AEP), a bacteria-free organic layer formed by the selective adsorption of salivary proteins on the surface of the enamel. However, the amount of proteins that can be recovered is even smaller under in vitro condition, due to the absence of continuous salivary flow. Objective This study developed an in vitro AEP protocol for proteomics analysis using a new formation technique with different collection solutions. Methodology 432 bovine enamel specimens were prepared (4x4 mm) and divided into four groups (n=108). Unstimulated saliva was provided by nine subjects. The new AEP formation technique was based on saliva resupply by a new one every 30 min within 120 minutes at 37ºC under agitation. AEP was collected using an electrode filter paper soaked in the collection solutions according with the group: 1) 3% citric acid (CA); 2) 0.5% sodium dodecyl sulfate (SDS); 3) CA followed by SDS (CA+SDS); 4) SDS followed by CA (SDS+CA). The pellicles collected were processed for analysis through LC-ESI-MS/MS technique. Results A total of 55 proteins were identified. The total numbers of proteins identified in each group were 40, 21, 28 and 41 for the groups CA, SDS, CA+SDS and SDS+CA, respectively. Twenty-three typical AEP proteins were identified in all groups, but Mucin was only found in CA and CA+SDS, while three types of PRP were not found in the SDS group. Moreover, a typical enamel protein, Enamelin, was identified in the CA+SDS group only. Conclusion The new technique of the in vitro AEP formation through saliva replacement was essential for a higher number of the proteins identified. In addition, considering practicality, quantity and quality of identified proteins, citric acid seems to be the best solution to be used for collection of AEP proteins.


Subject(s)
Animals , Cattle , Proteome , Proteomics , Dental Pellicle , Saliva , Salivary Proteins and Peptides , Dental Enamel , Tandem Mass Spectrometry
6.
J. appl. oral sci ; 28: e20190501, 2020. tab
Article in English | LILACS, BBO | ID: biblio-1090766

ABSTRACT

Abstract The acquired pellicle formation is the first step in dental biofilm formation. It distinguishes dental biofilms from other biofilm types. Objective To explore the influence of salivary pellicle formation before biofilm formation on enamel demineralization. Methodology Saliva collection was approved by Indiana University IRB. Three donors provided wax-stimulated saliva as the microcosm bacterial inoculum source. Acquired pellicle was formed on bovine enamel samples. Two groups (0.5% and 1% sucrose-supplemented growth media) with three subgroups (surface conditioning using filtered/pasteurized saliva; filtered saliva; and deionized water (DIW)) were included (n=9/subgroup). Biofilm was then allowed to grow for 48 h using Brain Heart Infusion media supplemented with 5 g/l yeast extract, 1 mM CaCl2.2H2O, 5% vitamin K and hemin (v/v), and sucrose. Enamel samples were analyzed for Vickers surface microhardness change (VHNchange), and transverse microradiography measuring lesion depth (L) and mineral loss (∆Z). Data were analyzed using two-way ANOVA. Results The two-way interaction of sucrose concentration × surface conditioning was not significant for VHNchange (p=0.872), ∆Z (p=0.662) or L (p=0.436). Surface conditioning affected VHNchange (p=0.0079), while sucrose concentration impacted ∆Z (p<0.0001) and L (p<0.0001). Surface conditioning with filtered/pasteurized saliva resulted in the lowest VHNchange values for both sucrose concentrations. The differences between filtered/pasteurized subgroups and the two other surface conditionings were significant (filtered saliva p=0.006; DIW p=0.0075). Growing the biofilm in 1% sucrose resulted in lesions with higher ∆Z and L values when compared with 0.5% sucrose. The differences in ∆Z and L between sucrose concentration subgroups was significant, regardless of surface conditioning (both p<0.0001). Conclusion Within the study limitations, surface conditioning using human saliva does not influence biofilm-mediated enamel caries lesion formation as measured by transverse microradiography, while differences were observed using surface microhardness, indicating a complex interaction between pellicle proteins and biofilm-mediated demineralization of the enamel surface.


Subject(s)
Animals , Cattle , Saliva/chemistry , Sucrose/chemistry , Tooth Demineralization/microbiology , Biofilms/growth & development , Dental Enamel/microbiology , Reference Values , Saliva/microbiology , Sucrose/analysis , Surface Properties , Microradiography/methods , Dental Enamel/chemistry , Dental Pellicle/microbiology , Pasteurization , Hardness
7.
Biol. Res ; 53: 03, 2020. tab, graf
Article in English | LILACS | ID: biblio-1089073

ABSTRACT

BACKGROUND: The pellicle, the acellular organic material deposited on the surface of tooth enamel, has been thought to be derived from saliva. In this study, protein compositions of the pellicle, gingival crevicular fluid, and saliva collected from healthy adults were compared to elucidate the origin of pellicle proteins. RESULTS: The pellicle, gingival crevicular fluid, and saliva from the parotid gland or mixed gland were collected; subsequently, protein expression in samples from the respective individual was compared by SDS-PAGE and mass spectrometry. Following SDS-PAGE, proteins in the major bands were identified by mass spectrometry. The band pattern of pellicle proteins appeared different from those of gingival crevicular fluid, or saliva samples. Using mass spectrometry, 13 proteins in these samples were identified. The relative abundance of the proteins was quantitatively analyzed using mass spectrometry coupled with stable isotope labeling and by western blot. Cystatin S and α-amylase detected in pellicle were enriched in saliva samples, but not in gingival crevicular fluid, by western blot, and their abundance ratios were high in saliva and low in gingival crevicular fluid when analyzed by stable isotope labeling. Serotransferrin, however, was found only in the pellicle and gingival crevicular fluid by western blot and its abundance ratio was low in saliva. CONCLUSIONS: Our study revealed that the gingival crevicular fluid appears to contribute to pellicle formation in addition to saliva.


Subject(s)
Humans , Male , Female , Adult , Saliva/chemistry , Proteins/analysis , Gingival Crevicular Fluid/chemistry , Dental Pellicle/chemistry , Mass Spectrometry , Blotting, Western , Electrophoresis, Polyacrylamide Gel
8.
Mycobiology ; : 250-255, 2019.
Article in English | WPRIM | ID: wpr-760534

ABSTRACT

In the present study, we aimed to determine the cause of surface film formation in three rice vinegars fermented using the traditional static fermentation method. The pH and total acidity of vinegar were 3.0–3.3 and 3.0–8.7%, respectively, and acetic acid was the predominant organic acid present. Colonies showing a clear halo on GYC medium were isolated from the surface film of all vinegars. Via 16S rDNA sequencing, all of the isolates were identified as Acetobacter pasteurianus. Furthermore, field-emission scanning electron microscopy analysis showed that the bacterial cells had a rough surface, were rod-shaped, and were ∼1 × 2 µm in size. Interestingly, cells of the isolate from one of the vinegars were surrounded with an extremely fine threadlike structure. Thus, our results suggest that formation of the surface film in rice vinegar was attributable not to external contamination, to the production of bacterial cellulose by A. pasteurianus to withstand the high concentrations of acetic acid generated during fermentation. However, because of the formation of a surface film in vinegar is undesirable from an industrial perspective, further studies should focus on devising a modified fermentation process to prevent surface film formation and consequent quality degradation.


Subject(s)
Acetic Acid , Acetobacter , Cellulose , DNA, Ribosomal , Fermentation , Hydrogen-Ion Concentration , Methods , Microscopy, Electron, Scanning
9.
Bauru; s.n; 2017. 99 p. ilus, tab, graf.
Thesis in English | LILACS, BBO | ID: biblio-883780

ABSTRACT

This study aimed to answer the following questions: 1) does whole fluoridated milk protect more against enamel and dentin erosion than fat-free fluoridated milk? 2) does the protective effect of fluoridated milk against erosion follow a dose-response relationship? 3) is the treatment with whole or fat-free fluoridated milk before the first erosive challenge more protective against enamel and dentin erosion? 4) does the fat content of milk change the proteomic profile of the acquired enamel pellicle (AEP)? This study was divided into 2 parts. The first part analyzed in vitro the effect of milk against dental erosion, considering three factors: type of bovine milk (whole/fat-free), presence of different fluoride concentrations (0- 10.0 ppm) and time of application (before/after erosive challenge). Bovine enamel (n=15/group) and root dentin (n=12/group) specimens were submitted to the following treatments: 0.9% NaCl solution (negative control)( after first erosive challenge); whole milk with 0, 2.5, 5.0, 10.0 ppm F; fat-free milk with 0, 2.5, 5.0, 10.0 ppm F; 0.05% NaF solution (positive control) (before or after first erosive challenge). Specimens were submitted to demineralization - remineralization regimes, 4 times/ day, for 5 days. The response variables were enamel and dentin loss, evaluated by profilometry (µm). Data were analyzed using Kruskal­Wallis/Dunn's test (p<0.05). The presence of fluoride, especially at 10 ppm, was the most important factor in reducing dental erosion. The second part detected changes in protein profile of AEP formed in vivo after rinsing with whole milk, fat-free milk or water. Nine subjects with good oral conditions participated. The AEP was formed in the morning, for 120 min, after prophylaxis with pumice. In sequence, the volunteers rinsed with 10 mL of whole milk, fat-free milk or deionized water for 30 s, following a blind, crossover protocol. After 60 min, the AEP was collected with filter paper soaked in 3% citric acid and processed for analysis by liquid chromatography-electrospray ionization tandem mass spectrometry (LCESI- MS/MS). The obtained MS/MS spectra were searched against human protein database (SWISS­PROT). The proteomic data related to protein quantification were analyzed using the PLGS software. A total of 260 proteins were successfully identified in the AEP samples collected in all groups. Forty-nine were common to the 3 groups, while 72, 62 and 49 were specific for groups treated with whole milk, fat-free milk and water, respectively. Some were typical components of the AEP, such as Cystatin-B, Lysozyme C, Histatin-1, Statherin and Lactotransferrin. Other proteins are not commonly described as part of the AEP but could act in the defense of the organism against pathogens. Distinct proteomic profiles were found in the AEP after rinsing with whole or fat-free milk, which could have an impact in bacterial adhesion and tooth dissolution. The use of fat-free milk could favorably modulate the adhesion of bacteria in the AEP and the biofilm formation in comparison to whole milk.(AU)


Este estudo objetivou responder as seguintes questões: 1) o leite integral fluoretado protege mais contra a erosão do esmalte e dentina do que o leite fluoretado desnatado? 2) o efeito protetor do leite fluoretado segue um padrão dose-resposta? 3) o tratamento com leite integral ou leite desnatado fluoretado antes do primeiro desafio erosivo protege mais contra a erosão do esmalte e dentina? 4) o leite contendo gordura altera o perfil proteico da película adquirida do esmalte (PAE)? O estudo foi dividido em 2 partes. Na primeira parte foi realizado um estudo in vitro, considerando três fatores: tipo de leite bovino (integral/ desnatado), diferentes concentrações de fluoreto e tempo de aplicação (antes/após desafio erosivo). Os espécimes de esmalte bovino (n=15 /grupo) e dentina radicular (n=12 /grupo) foram submetidos aos seguintes tratamentos: solução de NaCl a 0,9% (controle negativo)(após o desafio erosivo); Leite integral com 0, 2,5, 5,0, 10,0 ppm F Leite desnatado com 0, 2,5, 5,0, 10,0 ppm F 0,05% de solução de NaF (controle positivo) (antes ou após o primeiro desafio erosivo). Os espécimes foram submetidos a regimes de desmineralização e remineralização, 4 vezes/dia, durante 5 dias. As variáveis de resposta foram perda de esmalte e dentina, avaliadas por perfilometria (µm). Os dados foram analisados usando o teste de Kruskal-Wallis / Dunn (p <0,05). A presença de fluoreto, especialmente na concentração de 10 ppm, demonstrou ser o fator mais importante na redução da erosão dentária. A parte II do estudo detectou alterações no perfil proteico da PAE formada in vivo após bochecho com leite integral, leite desnatado ou água. Nove indivíduos com boas condições de saúde bucal participaram. A PAE foi formada pela manhã, durante 120 minutos, após profilaxia com pedra-pomes. Em seguida, os voluntários bochecharam com 10 mL de leite integral, leite desnatado ou água deionizada durante 30 s, seguindo um protocolo cego e cruzado. Após 60 min, a película foi coletada com papel de filtro embebido em ácido cítrico a 3% e processada para análise por cromatografia líquida acoplada à espectrometria de massas com ionização por eletrospray (LC-ESI-MS / MS). Os espectros MS/MS obtidos foram confrontados com bases de dados de proteínas humanas (SWISSPROT). Os dados proteômicos relacionados à quantificação de proteínas foram analisados usando o software PLGS. Um total de 260 proteínas foi identificado nas amostras de PAE coletadas em todos os grupos. Quarenta e nove eram comuns aos 3 grupos, enquanto 72, 62 e 49 eram específicas para grupos tratados com leite integral, leite desnatado e água, respectivamente. Algumas proteínas encontradas são típicas da PAE, como Cistatina-B, Lisozima C, Histatina-1, Estaterina e Lactotransferrina. Outras proteínas não são comumente descritas como parte da PAE, mas podem atuar na defesa do organismo contra patógenos. Perfis proteômicos distintos foram encontrados na PAE após o bochecho com leite integral ou desnatado, o que poderia ter um impacto na adesão bacteriana e na dissolução dentária. O uso de leite desnatado pode modular favoravelmente a adesão de bactérias na PAE e a formação do biofilme em comparação com o leite integral.(AU)


Subject(s)
Humans , Animals , Cattle , Cariostatic Agents/chemistry , Fluorides/chemistry , Milk/chemistry , Protective Agents/chemistry , Tooth Demineralization/prevention & control , Dental Enamel/drug effects , Dentin/drug effects , Proteins/analysis , Proteomics , Reproducibility of Results , Time Factors
10.
Bauru; s.n; 2017. 84 p. tab, graf.
Thesis in Portuguese | LILACS, BBO | ID: biblio-880083

ABSTRACT

Os peptídeos da estaterina (DR9) e da histatina 3 (RR14), que ocorrem naturalmente na película in vivo, amplificam o efeito inibitório do crescimento de cristais de hidroxiapatita, função relacionada à remineralizarão do esmalte e formação de cálculos dentários. A hipótese da duplicação/hibridação de domínios funcionais dos peptídeos DR9 da estaterina e RR14 da histatina 3 foi testada. Para isto, os peptídeos peptidomiméticos (DR9-DR9, DR9-RR14), além deles individualmente e suas proteínas intactas (DR9, RR14, estaterina e histatina 3) foram estudados em sete concentrações diferentes para avaliar o efeito da inibição do crescimento de cristais de hidroxiapatita. Foi utilizado um ensaio colorimétrico de microplaca para quantificar o crescimento de cristais de hidroxiapatita. As experiências foram feitas em triplicata e a concentração inibitória (IC50) foi estabelecida para cada grupo. A IC50 foi calculada para todos os peptídeos e proteínas testados. A histatina 3 e o RR14 não atingiram o valor de IC50. O DR9- RR14 atingiu o valor de IC50 a 3,80 M. Como esperado, DR9 e DR9-DR9 demonstraram um efeito inibitório significativo na atividade de crescimento de cristais, atingindo o valor de IC50 a 2,82 M e 1,07 M, respectivamente. A estaterina atingiu o valor de IC50 a 2,50 M. Na análise estatística, foram aplicados os testes ANOVA e Student-Newman-Keuls para comparações por pares, para comparar os valores entre os grupos. O DR9-DR9 amplificou o efeito inibitório do crescimento de cristais de hidroxiapatita quando comparado com DR9 único (p <0,05), demonstrando que a multiplicação do domínio funcional é uma forte tendência evolutiva da proteína. De forma interessante, o peptídeo híbrido DR9-RR14 demonstrou um efeito inibitório intermediário quando comparado com outros dois grupos: DR9 único e DR9-DR9. Este estudo utilizou a abordagem peptidomimética para investigar uma via potencial de evolução da proteína relacionada com a duplicação/hibridação dos constituintes peptídicos naturais da película adquirida de esmalte. O conhecimento obtido por meio dos resultados deste trabalho pode fornecer uma base para o desenvolvimento de peptídeos sintéticos para uso terapêutico, tanto contra cárie dentária, como para a doença periodontal.(AU)


The statherin and histatin 3 peptides (DR9 and RR14 respectively), which occur naturally in the film in vivo, amplify the inhibitory effect for the growth of hydroxyapatite crystals, a function related to remineralization of the enamel and formation of dental calculi. The hypothesis of duplication/hybridization of functional domains of the DR9 peptides of the statherin and RR14 of histatin 3 was tested. For this, the peptidomimetic peptides (DR9-DR9, DR9-RR14), in addition to them individually and their intact proteins (DR9, RR14, statherin and histatin 3) were studied at seven different concentrations to evaluate the effect of growth inhibition of hydroxyapatite crystals. A colorimetric assay of microplate was used to quantify the growth of hydroxyapatite crystals. The experiments were done in triplicate and the inhibitory concentration (IC50) was established for each group. The IC50 was calculated for all peptides and proteins tested. Histatin 3 and RR14 did not reach the IC50 value. DR9-RR14 reached the IC50 value at 3.80 M. As expected, DR9 and DR9-DR9 demonstrated a significant inhibitory effect on crystal growth activity, reaching the IC50 value at 2.82 M and 1.07 M, respectively. Statherin reached the IC50 value at 2.50 M. ANOVA and Student-Newman-Keuls tests for paired comparisons were applied to compare the values between the groups. DR9-DR9 amplified the inhibitory effect of hydroxyapatite crystal growth when compared to single DR9 (p <0.05), demonstrating that the multiplication of the functional domain is a strong protein evolution pathway. Interestingly, the hybrid peptide DR9-RR14 demonstrated an intermediate inhibitory effect when compared to other two groups: single DR9 and DR9-DR9. This study utilized the peptidomimetic approach to investigate a potential pathway of protein evolution related to duplication/hybridization of the natural peptidic constituents of the acquired enamel film. The knowledge obtained through the results of this work can provide a basis for the development of synthetic peptides for therapeutic use, both against dental caries and for periodontal disease.(AU)


Subject(s)
Dental Enamel/chemistry , Durapatite/chemistry , Peptidomimetics/chemistry , Analysis of Variance , Chromatography, High Pressure Liquid , Colorimetry/methods , Histatins/analysis , Histatins/chemistry , Peptidomimetics/analysis , Reference Values , Statistics, Nonparametric
11.
São José dos Campos; s.n; 2016. 120 p. ^cil.120, tab. , graf..
Thesis in Portuguese | LILACS, BBO | ID: biblio-847846

ABSTRACT

A erosão dental é um processo multifatorial que envolve a desmineralização do esmalte/dentina pela ação química de ácidos extrínsecos ou intrínsecos. A película adquirida é um filme, livre de bactérias, que cobre os dentes e atua como barreira de difusão ou membrana permeável seletiva, prevenindo o contato direto de ácidos com a superfície dos dentes. Os dentifrícios, normalmente usados no controle do biofilme bucal, possuem agentes tensoativos, que podem influenciar na adsorção de proteínas salivares, e atuar diretamente na formação da película adquirida e na liberação de fluoretos para o meio bucal. Assim, verificou-se a ação destes agentes na formação e proteção da película adquirida, sua interação com fluoreto de sódio (NaF) no esmalte, e consequentemente sua interferência na proteção contra a erosão dental. Foram testados três tensoativos (Lauril Sulfato de Sódio - LSS, Tween 20 ­ T20 e Cocoamidopropil Betaína - CAPB), em duas concentrações (1,0% e 1,5%). A água foi utilizada como controle negativo. Amostras de esmalte bovino foram submetidas a um modelo de des/remineralização com ácido cítrico durante 5 dias, imersão em saliva humana para formação de película adquirida e em soluções com os tensoativos testados, associados ou não ao NaF (275 ppm). A solução de NaF foi utilizada como controle positivo. A análise da energia de superfície do esmalte foi determinada por goniometria e a formação de película adquirida quantificada por espectroscopia (FTIR). A erosão inicial foi determinada por microdureza no primeiro dia (mensurada após o primeiro ácido, após o tratamento e após o segundo ácido) e a perda de estrutura de esmalte foi definida por perfilometria ao final de cinco dias de ciclo. Ainda, foi quantificado o flúor solúvel em KOH adsorvido na superfície do esmalte com eletrodo específico. Os resultados de goniometria mostraram que apenas o LSS e o CAPB em ambas concentrações diminuíram o ângulo de contato entre a água e o esmalte. Quanto à quantificação da formação de película, não foi possível verificar diferença significante entre os grupos testados. Com relação à erosão, os dados de dureza mostraram que os tensoativos, independente da concentração, não interferiram no reendurecimento do esmalte, porém o LSS a 1% e 1,5% interferiu no potencial de proteção do NaF, e o T20 a 1% e 1,5% e o CAPB a 1,5% protegeram o esmalte, porém não foram superiores ao efeito do NaF. Já a análise perfilometria mostrou que o T20 a 1% resultou em menores valores de perda que a 1,5%, e ainda que o CAPB 1% e 1,5% foi capaz de proteger comparado ao controle negativo, no entanto nenhum agente associado ao NaF protegeu mais do que o controle positivo. Os dados da concentração de flúor KOH-solúvel indicaram que os tensoativos reduziram a adsorção do CaF2 ao esmalte. Conclui-se que os tensoativos testados reduziram o ângulo de contato da água com o esmalte (exceção do T20). O LSS reduziu o potencial protetor do NaF e da película na erosão inicial e nenhum agente testado interferiu na capacidade protetora do NaF contra a progressão do desgaste erosivo(AU)


Dental erosion can be defined as a multifactorial process that induces tooth dissolution by intrinsic or extrinsic acids. Acquired pellicle is a film, free from bacteria, that covers all tooth tissues, and acts as a selective membrane that prevents direct contact of the acids with enamel/dentin surface. Dentifrices, frequently used in the biofilm control, have some constituents, such as surfactant agents, which influence on the adsorption of salivary proteins, and may directly affect the formation of salivary pellicle and the fluoride release on oral environment. Thus, it was verified the influence of surfactants over the protective effect of the acquired pellicle, and on the interaction of fluoride with enamel. Three different surfactants were tested (Sodium Lauryl Sulphate - SLS, Tween 20 ­ T20 and Cocoamidopropyl Betaine - CAPB), in 2 different concentrations (1.0% and 1.5%). Water was used as negative control. Bovine enamel samples were selected and submitted to an in vitro des/remineralization model with citric acid during 5 days, immersion in human saliva for acquired pellicle formation and immersion in the surfactant solutions, associated or not with sodium fluoride (NaF ­ 275ppm). A NaF solution was used as positive control. The surface wettability was determined by contact angle between water and the enamel using a tensiometer, and the acquired enamel pellicle formation was assessed using a spectrophotometer (FTIR). Initial erosion was defined by microhardness at the first cycle day (measured after the first acid, after treatment and after the second acid), and the structure loss was determined by profilometry. The KOH-soluble fluoride was also quantified after the end of the cycle. The surface energy analysis showed that only SLS and CAPB in both concentrations decreased the contact angle between enamel and water. Regarding the proteins quantification, no differences were found between the groups. Concerning initial erosion, microhardness data showed that all surfactants, in both concentrations, did not interfered with enamel remineralization, but 1% and 1,5% SLS interfered on NaF protective effect. 1% and 1,5% T20 and 1,5%, CAPB despite presenting some protective effect against new acid challenge, did not promote the same protection as NaF. Profilometry results showed that the 1% T20 promoted lower surface loss than at 1.5%, while 1% and 1.5% CAPB protected enamel compared to negative control group. However, no agent associated with NaF showed higher protection than the positive control. KOH-soluble fluoride analysis showed that all surfactants reduced the CaF2 adsorption over enamel surface. It can be concluded that the surfactants tested reduced the enamel contact angle (except for T20). The SLS decreased the protective potential of NaF associated with the pellicle in initial erosion and no agent tested interfered with the protective effect of NaF on enamel erosive wear(AU)


Subject(s)
Humans , Saliva , Fluorine , Surface-Active Agents , Tooth Erosion
12.
Article in English | IMSEAR | ID: sea-174258

ABSTRACT

Saliva is essential for maintaining the protection and normal functioning of the masticatory system. A 'dry mouth' or xerostomia resulting from a perceived reduction in salivary flow may lead to numerous signs and symptoms of oral dysfunction. The quality of life for affected people may be poor. Many of these persons are taking multiple medications that cause a reduced salivary flow, and the number of people taking such drugs can be expected to increase. The ingestion of softer cariogenic foods, and acidic foods and beverages in attempts to stimulate an increased saliva flow, is disastrous for the teeth.

13.
Journal of Medical Research ; (12)2006.
Article in Chinese | WPRIM | ID: wpr-561812

ABSTRACT

0.05),however,it can shorten curative time obviously on Ⅱ type dental ulcer.Simultaneously,the general reaction and focal mucosa of borneolum and borax pellicle group had no obvious variation before and after the test.Conclusions Chitosan has no effect on min-pigs' nerve,cardiovascular and respiratory system;and it is relatively safe given by mouth or peritoneal injection.The borneolum and borax pellicle can shorten curative time obviously on Ⅱtype dental ulcer.

14.
The Journal of the Korean Academy of Periodontology ; : 127-137, 2003.
Article in English | WPRIM | ID: wpr-93683

ABSTRACT

No abstract available.


Subject(s)
Adsorption , Dental Pellicle , Saliva , Salivary Proteins and Peptides , Titanium
15.
Korean Journal of Orthodontics ; : 443-453, 2002.
Article in English | WPRIM | ID: wpr-649236

ABSTRACT

The principal aims of this study were to identify the composition of salivary pellicles formed on various orthodontic brackets and to obtain a detailed information about the protein adsorption profiles from whole whole saliva and two major glandular salivas. Four different types of orthodontic brackets were used. All were upper bicuspid brackets with a 022 x 028 slot Roth prescription; stainless steel metal, monocrystalline sapphire, polycrystalline alumina, and plastic brackets. Bracket pellicles were formed by the incubation of orthodontic brackets with whole saliva, submandibular-sublingual saliva, and parotid saliva for 2 hours. The bracket pellicles were extracted and confirmed by employing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western transfer methods, and immunodetection. The results showed that low-molecular weight salivary mucin, alpha-amylase, secretory IgA (sIgA), acidic proline-rich proteins, and cystatins were attached to all of these brackets regardless of the bracket types. High-molecular weight mucin, which promotes the adhesion of Streptococcus mutans, did not adhere to any orthodontic brackets. Though the same components were detected in all bracket pellicles, however, the gel profiles showed qualitatively and quantitatively different pellicles, according to the origins of saliva and the bracket types. In particular, the binding of sIgA was more prominent in the pellicles from parotid saliva and the binding of cystatins was prominent in the pellicles from the form plastic brackets. This study indicates that numerous salivary proteins adhere to the orthodontic brackets and these salivary proteins adhere selectively according to bracket types and the types of the saliva.


Subject(s)
Adsorption , alpha-Amylases , Aluminum Oxide , Bicuspid , Cystatins , Electrophoresis , Immunoglobulin A, Secretory , Mucins , Orthodontic Brackets , Plastics , Prescriptions , Saliva , Salivary Proteins and Peptides , Sodium , Stainless Steel , Streptococcus mutans
16.
Journal of Practical Stomatology ; (6)2001.
Article in Chinese | WPRIM | ID: wpr-539022

ABSTRACT

Objective: To observe the effect of purified high rela ti ve molecular mass mucin(MG1) pellicle on the protection of human dental enamel against demineralization.Methods: MGI was extracted from human saliva and purified.MGI pellicle and whole saliva pellicle were formed on dental enamel samples in vitro ,Then The samples were treated by 34 mmol/L citric acid for 1 min.The demineralization of the samples was observed by scanning electronic microscopy(SEM). Results:After treatment by the acid the enamel surfaces covered by MGI pellicles or whol e saliva pellicle showed relatively smooth and normal enamel morphological feat ures, on the contrary the surface without pellicle showed large area of deminer alization and bee nest like appearance. Conclusion: The data indicate that the MG1 in enamel pellicle contribute to its protective effec ts against acidic attack on the enamel surface.

SELECTION OF CITATIONS
SEARCH DETAIL